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Received 2 July 1974, in final form 30 September 1974 

Abstract. The effects of two-photon absorption from a single beam of light on the statistical 
properties of the beam are considered. Simple expressions are obtained for the initial 
rates of change and limiting steady-state values of the mean photon number and degree 
of second-order coherence of the beam. The general time dependences of these properties 
of the light and of the complete photon probability distribution are evaluated for several 
initial types of beam. The physical significance of the results is described, and their re- 
lationship to calculations which use a classical representation of the light is discussed. 

I. Introduction 

The linear absorption and stimulated emission of light take place with probabilities 
which are proportional to the number n of photons in the light. The time-averaged 
absorption and emission rates are proportional to the mean photon number ii or 
mean intensity of the light; they are independent of its coherence properties (see for 
example Loudon 1973). The rates of nonlinear optical processes, on the other hand, 
usually depend on the degrees of coherence of the light beam and on correlations 
between light beams, when more than one beam participates in the process. 

The present paper considers the statistical features of the nonlinear process of 
two-photon absorption from a single beam of light. The two-photon absorption 
probability is proportional to n(n - l), and the time-averaged absorption rate is pro- 
portional to the square of the mean number of photons and to the degree of second- 
order coherence of the light, denoted by g"). This result has been known for some 
time (Teich and Wolga 1966, Lambropoulos et a1 1966, Shen 1967) and a derivation is 
given below (see equation (34)). One well known consequence is the prediction that 
for equal mean photon numbers ii, a beam of chaotic light is two-photon absorbed at 
twice the rate of a beam of coherent light, and this has received experimental support 
from the work of Shiga and Imamura (1967). 

The proportionality of the time-averaged two-photon absorption rate to the degree 
of second-order coherence can be understood in qualitative terms. The size of g(2) 
provides a measure of the magnitude of the fluctuations in the photon number n. Since 
the probability of two-photon absorption is proportional to n(n - l), enhanced ab- 
sorption occurs for beams whose photon numbers fluctuate about the mean ii. The 
absorption from a fluctuating light beam occurs preferentially at the maxima of n. 
This property is clearly illustrated, for a classical model of the intensity fluctuations in 
chaotic light, by Weber (1971) in figure 2 of his paper. As the two-photon absorption 
proceeds the intensity peaks are rapidly eroded, while the intensity troughs are barely 
changed by the negligibly small absorption at low intensity. 
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Two-photon absorption therefore smooths intensity or photon-number fluctuations 
and causes changes in the statistical properties of the unabsorbed portion of the beam. 
In particular the magnitude of g(,) is changed by a significant amount of two-photon 
absorption, leading to associated changes in the absorption rate itself, which are often 
neglected in conventional treatments of the absorption process. The present paper is 
concerned with this interdependence of the two-photon absorption and the photon- 
number fluctuations of the beam. 

The equations which describe the rate of change of the photon statistical dis- 
tribution caused by two-photon absorption and emission are introduced in $ 2 .  This 
is followed in 0 3 by a brief review of the photon distributions and coherence properties 
of several types of light beam whose two-photon absorption is treated in later sections. 
The main calculations begin in $ 4  with a determination of the changes in ii and g(,) 
after a short period of two-photon absorption. The opposite extreme of the steady 
state achieved after a long period of absorption is treated in 0 5. The short-time and 
steady-state solutions give physical insight into the mechanisms by which the changes 
in the beam statistical properties are brought about. 

A generating function method introduced by Agarwal (1970) and developed by 
McNeil and Walls (1974)  and Tornau and Bach (1974) is used in 0 6 to obtain the com- 
plete time dependences of the mean photon number 3, the second factorial moment 
n(n- 1 )  and the elements P,, of the photon probability distribution. The varieties of 
behaviour shown by a range of initial types of beam are discussed in physical terms in 
$ 7 ,  and the results are compared with those of calculations which ignore the time 
dependence of g(') or use a classical model of the light beam. 

2. Photon rate equations 

Consider the photons in a single mode of the radiation field whose frequency allows 
two-photon absorption by a gas of N atoms. It is assumed that the atoms have no 
transitions of the required frequency for single-photon absorption. Suppose that N ,  
atoms are in the lower state and a smaller number N ,  are in the upper state of the 
two-photon transition, with 

( 1 )  
The numbers of atoms in the two states are assumed to be fixed by some external in- 
fluence, but the number n of photons is regarded as a statistical quantity whose prob- 
ability distribution P,, changes with time. 

The probability per unit time that a two-photon absorption takes place, with a 
change in the photon number from n to n - 2 ,  can be written as 

N I  + N ,  = N .  

N,Jn(n - I), (2) 
where an expression for J in terms of atomic energy levels and dipole matrix elements 
can be obtained for example from Loudon (1973). The corresponding probability per 
unit time of a two-photon emission, leading to an increase in the photon number 
from n to n + 2,  is 

N J ( n  + l ) ( n  + 2) .  ( 3 )  
The two-photon absorption and emission cause changes in P,,, the probability that the 
radiation field contains n photons. 
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There are four types of transition which contribute to the rate of change of P,,. If 
n photons are indeed present in the radiation field, the absorption and emission de- 
scribed by (2) and (3) reduce P,, at a combined rate 

- N , J n ( n  - l)Pn - N,J(n+ l)(n + 2)P,,. (4) 
There are also two positive contributions to the rate of change of P,,. If n-2 photons 
are present, with probability P,,-z, emission of two photons increases P,, at a rate 
determined by (3) with n replaced by n - 2 : 

N , J ( n -  l)nP,,-z. ( 5 )  

Similarly, if n + 2  photons are present, two-photon absorption increases P,, at a rate 
determined by (2) with n replaced by n + 2 : 

N 1J(n + 2)(n + 1 )P, + 2 .  (6) 
The total rate of change of P,, obtained from (4), (5) and (6) is 

dP,,/dt = - N , J n ( n -  I)P, , -N,J(n+ l)(n+2)P,, 

+ N , J ( n  - l)nP,, - 2 + N 1J(n + 2) (n + l)Pn + 2 . (7) 
The four contributions to the rate of change are entered on the photon energy level 
diagram in figure 1. The first and third terms in (7) should be removed for n = 0 and 
n = 1, when the processes described by these terms cannot occur. An equation identical 
to (7) can be derived by density operator techniques using an explicit form for the 
photon-atom interaction Hamiltonian (Shen 1967, Lambropoulos 1967, Agarwal 
1970, McNeil and Walls 1974). 

The system of rate equations, of which (7) is a representative, can be divided into 
two sets, one of which couples all the P,, for positive odd integers n, and the other of 
which couples all the P,, for positive even integers n and n = 0. It is seen by addition 
of all the equations in each of the sets that the sums of P,, over all even or all odd integers 
n are constants of the motion. Thus if P,,(O) is the photon probability distribution at 
time t = 0, 

even even 

n n 

odd odd 

- - - - - - - - -  
Figure 1. Energy level diagram for the photons. The level separation is twice the photon 
energy and the transition rates indicated are the contributions to dPJdt. 
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The rate equations used here are independent of position, since propagation effects 
have not been included. The analysis which follows is valid for the interaction of 
radiation with atoms in a cavity whose length is sufficiently short for the transit time 
of light to be small compared with the time scale of changes in P,,. 

3. Photon probability distributions 

The two-photon absorption of several types of initial light beam is treated in later 
sections. The main properties of these beams are summarized without proof in the 
present section. Most of the results can be taken directly from the literature (see for 
example Loudon 1973), while the remainder require only a little derivation. In each 
case expressions are given for the normalized photon probability distribution, for its 
second and third moments, where the rth moment is defined by 

- 
n' = 1 nrPn, 

n 

and for the degree of second-order coherence g(2). This latter quantity is determined 
for any single-mode light beam by the second factorial moment of the probability 
distribution, 

g'2' = (&fi)/$. (1 1) 

3.1. The number-state beam 

A beam with a definite number tio of photons at time t = 0 has the initial probability 
distribution 

PAO) = dniio dni0 = 1 for n = ii, (12) 
= 0 otherwise. 

The second and third moments are 

and the degree of second-order coherence is 

and is indeterminate for E, = 0. The number state is not of great practical interest but 
it is a useful limit in which to evaluate the theory. 

3.2. The coherent beam 

The initial probability P,,(O) for a mean photon number Eo is given by a Poisson dis- 
tribution 

(15) P,,(O) = (n;/n !) exp( - E,), 
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leading to 

(16) 

= i i + 3 f i ; + f i o  (17) 

gg' = 1.  (18) 

7 - -2 no - n o + i o  

The photon state of a single-mode laser well above threshold is a close approximation 
to a coherent beam. 

3.3. The chaotic or thermal beam 

The photon statistics in this case are given by a Bose-Einstein distribution 

Pn(0) = ii$/(l+ i i o y  + n ,  

2 = 2ii;+ii0 (20) 

$ = 6iii +6R; + i i o  (21) 

gf '  = 2. (22) 

(19) 

leading to 

Lasers below threshold and conventional light sources provide chaotic or thermal 
beams. 

3.4. The pulsed coherent beam 

This kind of beam is obtained by repeatedly switching a beam of coherent light on 
and off. If no/f is the mean photon number of the coherent beam and the duty factor 
f is the fraction of the time for which the beam is turned on, then the mean photon 
number of the pulsed beam is io, independent off. The probability distribution is 

The degree of second-order coherence of the pulsed beam can have any value greater 
than unity by suitable choice off. 

4. Short-time solutions 

It is instructive to consider the changes in the initial statistical properties of the photons 
to first order in the time t. We derive the initial rates of change of the first and second 
moments of the photon distribution, and combine these to obtain the rate of change 
of g'2'. 
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Equations for the rates of change of the moments are obtained by time-differentiation 

(27) 

of (10) and insertion of the rate of change of P, from (7): 

diildt = 2(N2 - N ,)J? + 2(3N 2 + N 1)Jfi + 4N2J 

d?/dt = 4(N2-N1)3~+8(2N2+N,)J?+4(5N2-N1)Jfi+8N2J. (28) 

These expressions differ by numerical factors from the corresponding equations ( 1  6) of 
Shen (1967) and (7.2) of McNeil and Walls (1974), but agree with Lambropoulos (1967). 
It is seen from (27) and (28) that the change with time of each moment of the distribution 
depends on the next higher moment, making a simple solution of the equations 
impossible. 

It is however easily possible to obtain the initial behaviours of the moments. If the 
values of the moments at t = 0 are substituted on the right-hand sides of (27) and (28), 
then these expressions are the coefficients of t in power-series expansions, and correct 
to order t ,  

f i  = ii, + 2 ~ t [ ~  2(3 + 3ii, + 2) - N , (3 - cO)l 
n2 = 3 + 4J t [N2(2  + 4 3  + 5fi0 + 2) - h’ , (2- 2 2  + Eo)]. 

(29) 

(30) 

The corresponding expansion of g(’) can be obtained from these results and (1 1) with 
some algebra : 

- 

= go (2)  + ( 2 ~ t p i ) { ~ , [ 2 Z + 3 i $ +  13fi0+6--($/fiO)(2$+4)] 

(31) - ~ , [ 2 n ,  3 7  - no + tio - 2(i3fi0)i$]). 

The linear time dependences of ti, 2 and g‘z)  for various types of initial light beam 
can now be obtained straightforwardly by substitution of the appropriate expressions 
for 3, $ and gb2’ from $ 3 .  For example, in the case of initially coherent light (31) 
gives 

g(2’ = 1 + ( 2 J t / n i ) [ ( 5 N 2 - N , ) j j i +  12N2~0+2N2],  (32) 
in agreement with the finding of Chandra and Prakash (1970) that g(’) decreases below 
the value unity if fi, >> I and N ,  < N/6. 

The rather complicated expressions given above all simplify for the special case 
where almost all the atoms are in their lower levels. This also corresponds closely to 
the normal experimental situation where there is a negligibly small excited state pop- 
ulation. We take N ,  = 0 and N ,  = N for the remainder of the present section and 
define a new time variable 

T = N J t .  (33) 

dii/dT = -2g‘2’ii2 (34) 

jj = fi,(l -2  g o  (2) -  ROT).  (35) 
Thus for small t ,  where this equation is valid, and taking gb2) from $ 3, it is seen that 
chaotic light is two-photon absorbed at twice the rate for coherent light, as mentioned 
in 9 1, the rate for the number-state beam is close to that for coherent light, and the 
rate for the pulsed beam increases with decreasing pulse duration. 

Then (27) becomes 

where ( 1  1) has been used, and (29) can be written as 
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The results for the degree of second-order coherence, obtained by substitution into 
(31), are 

g c 2 )  = [(?io - l)/iiO] ( 1  + 22) (number) (36) 

g‘2’ = 1 - 22 (coherent) (37) 

It is seen that the rate of decrease in g(2 )  for chaotic light exceeds that for coherent 
light by a factor 2(2ii0+ 1).  The number-state beam differs from the other three in 
showing an initial increase in g‘2).  

The initial variations in ii and g(2 )  are shown at the short-time ends of the figures 
given in Q 7, where their behaviour is discussed in greater detail. 

5. Steady-state solutions 

The photon system settles down into a steady state after a sufficiently long period of 
time has elapsed. The rates of change (7) are equal to zero in the steady state, leading 
to two chains of equations for the P,,, one for even n and the other for odd n. If the 
steady-state probability distribution is denoted Pn(m), the rate equations give 

NlPn(m) = N 2 P n - 2 ( ~ ) *  (40) 

It is seen by reference to figure 1 that this is just the condition for detailed balance 
between the photon levels n and n - 2. 

By iteration of (40) 

P,(m) = (N2/N1)”’2~0(m) for n even (41) 

Pn(m) = (N2/N1)cn-1)~2P,(m) for n odd. (42) 

Hence 

n n 

where (8) and (9) have been used. Equations (41) to (44) enable Pn(cc) to be determined 
for any given initial distribution Pn(0). Addition of (43) and (44) gives the simple result 

Po(m)+P,(m) = 1 --W2/Nl). (45) 

It is seen that the steady-state photon distribution given by (41) and (42) has some 
resemblance to a chaotic distribution (compare equation (10.17) of Loudon 1973), but 
it differs by the separation into two parts which are not coupled by the two-photon 
absorption and emission. The moments of the distribution can be determined without 
difficulty ; the mean number of photons in the steady state is 
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and the second factorial moment is 

The results again simplify when N2 can be set equal to zero. In this case (41) and 
(42) show that 

P,(Oo) = 0 for n 2 2, (48 1 
and the steady state is achieved when there are no pairs of photons left to be absorbed. 
From (46) and (47) 

Em = Pl(a3) (49) 

and 

&-E, = 0. 

g2' = 0, 

It follows from ( 1  1 )  that 

except in the special case where Em = 0, considered in 0 7. Table 1 shows the values 
of P0(m) and Pl(a3) for several examples. 

The steady-state values of ii, g(') and P,, are shown at the large-time ends of the 
figures of 0 7. We note that figure 1 of Agarwal (1970), showing the time dependence 
of ii for an initially coherent beam with A, = 10, has the incorrect steady-state value 
Em = 1. In addition, the variance of the distribution shown in figure 3 of this reference 
should have the steady-state value of 0.25. 

6. General solutions 

Agarwal (1970) has pointed out that the rate equations (7) can be solved for the time- 
dependent photon probability distribution P,,(T) by a generating function method in 
the case where N2 = 0. We define 

where 7 is defined by (33). On multiplication of both sides of (7) by y" and summation 
over n we obtain 

aF/aT = ( 1  - p)a2F/ay2. (53) 
The generating function provides a simple means of obtaining the factorial moments 
of the distribution, and it is seen from (10) and (52) that 

(54) n(n - l)(n - 2) . . . (n - I + 1 )  = (a'F/dy'), = , 

P,,(T) = ( n ! ) - ' ( a " F / ~ y " ) , = , .  ( 5 5 )  

while the distribution itself is obtained from 

The solution of (53) by the method of separation of the variables has been con- 
sidered by Agarwal (1970), McNeil and Walls (1974) and Tornau and Bach (1974). 
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The generating function has the form 

where C;*(y) is a Gegenbauer polynomial. The coefficients Ak can be obtained by a 
method described by McNeil and Walls, and we find 

(m - k sven) 

where PJO) is the initial photon distribution. The restriction of the summation to 
values of m which differ from k by even integers is a consequence of the separation of 
the rate equations into two chains for even and odd photon numbers. We note that 
(57) differs by a sign in the gamma function in the denominator from a result for even 
k given by McNeil and Walls (Walls, private communication, has confirmed the 
presence of a misprint in equation (5.10) of this paper). 

The Gegenbauer polynomials have the following properties (see for example 
Q 10.9 of Erdelyi et a1 1953): 

(i?/dy)t;*(y) = [ 2 9 - ( ~ 4 ) / r (  -+)]~lk-_t(y) for k 2 I 
(58)  = o  for k c 1 

and 

CL:!(I) = ( k  + r -2) !/(k- r )  !(2r - 2)! (59) 

(60) 
Ci::(O) = (- l)*k-*nT(Jk+in-4)/T(n-i)r(&k-+n+1) fork - n even 

for k - n odd. = o  
It follows from (54), (56), (58 )  and (59) that the first two factorial moments are given by 

m 
n =  - - Ak exp[ - k(k - I)?] 

k =  1 

while the photon probability distribution obtained from (55),  (56), (58)  and (60) is 

For any given initial photon distribution, A, is determined by (57) and these equations 
provide explicit expressions for the photon distribution and its moments as functions 
of the time. 

We conclude this section by relating the general solution for the photon distribution 
to its steady-state properties derived in the previous section. At infinitely long times 
T, (63) gives 

Po(m) = A ,  (64) 

pl(m) = --A19 (65) 
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and the probability for two or more photons is zero, in agreement with (48). From 
(571, 

and the steady-state values of Po and PI given by (64) and (65)  thus agree with our 
previous results (43) and (44) in the case N ,  = 0. It is seen from (66) that A ,  does not 
in general have the value unity assumed by McNeil and Walls (1974). 

7. Discussion 

The main features of the changes in photon statistical properties brought about by 
two-photon absorption are best appreciated by consideration of some special cases. 
Graphs are presented in this section for the time dependences of the mean photon 
number, the degree of second-order coherence, and the photon probability distribution 
for the case N ,  = 0 and for a variety of initial photon distributions. The graphs have 
been constructed by evaluation of the summations in (61), (62 )  and (63 )  with the help 
of a computer. 

The five curves in figures 2 and 3 show the time variations of ii for the five types of 
initial photon state listed in table 1. The behaviours of f i  at short times are consistent 
with equation (35),  and in particular the factor of two difference between the initial 
absorption rates of chaotic and coherent light is clearly shown in figure 3. The steady- 
state limits of ii are as indicated in table 1 ; the differences in steady-state behaviour are 
particularly marked for the odd and even number-state beams shown in figure 2. 

7 

Figure 2. Time dependences of the mean photon numbers ti for beams which are initially 
number states containing 10 photons (-) and 1 1 photons (- --). 
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r 

Figure 3. Time dependences of the mean photon numbers ii for beams which are initially 
coherent (-), chaotic (---) and pulsed (-.-.-.- ). All the beams have an initial 
mean photon number io = 10. and the pulsed beam has a duty factor f = t .  

Table 1. The steady-state photon probability distributions for N ,  = 0 and various types 
of initial photon distribution 

number number coherent chaotic pulsed 
state state 
ii, even ii, odd iio = IO io = IO A, = l0,f = 4 

In conventional treatments of two-photon absorption it is customary to ignore the 
time dependence of g(2),  which is set equal to the initial value g a ) .  With this substitution 
the solution of (34) is 

This approximate solution for ii can be compared with the exact solutions shown in 
figures 2 and 3. It is seen that (68) agrees with the exact solution at short times given 
in (35), but at longer times the approximate solution gives smaller ii than the exact 
results. The discrepancy is particularly serious for initially chaotic light. 

The approximate solution fails at longer times because the degree of second-order 
coherence falls below its initial value and thus causes a decrease in the absorption rate. 
Exact results for the time variations of g(2) for the five light beams are shown in figures 
4 and 5.  The short-time behaviours of g(2)  are in accordance with equations (36) to 
(39), while g(2)  generally tends to zero in the steady state. An exception to this behaviour 
occurs for any initial number state in which an even number of photons is present. In 
this case the denominator of g(2) defined in (1 1) tends to zero at a faster rate than the 
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gt2, 

7 

Figure 4. Time dependences of the degrees of second-order coherence g(2) for beams which 
are initially number states containing IO photons (-) and I 1  photons (- --). 

gtz, 

7 

Figure 5. Time dependences of the degrees of second-order coherence gt2' for beams which 
are initially coherent (-), chaotic (---) and pulsed ( - . - a  -), with the same parameters 
as in figure 3. 

numerator as z tends to infinity, leading to an anomalous divergence in g(2). Experi- 
mental light beams have iim different from zero and this anomalous behaviour of g'') 
is not of practical importance. 

Apart from this exception the smoothing of fluctuations by the two-photon ab- 
sorption produces degrees of second-order coherence which reduce with time. Of the 
beams considered, the fall-off is particularly noteworthy for the chaotic or thermal 
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case. It is seen in figure 5 that g(,) for chaotic light falls rapidly from its initial value of 
two and that for z greater than about 0.5 the initially chaotic and coherent beams have 
very similar values of their degrees of second-order coherence. 

The calculations shown in figures 4 and 5 are quantum mechanical, since they 
make use of the degree of second-order coherence g”’ defined by (1 1) in terms of the 
mean and mean-square photon numbers. A previous study of the two-photon ab- 
sorption of chaotic and coherent light has been made by Weber (1971) using a classical 
description of the light. The classical degree of second-order coherence is defined by 

g ( Z )  = ?r/p 7 (69) 

where I is the fluctuating intensity of the light. The classical g‘” does not take values 
smaller than unity, in contrast to the behaviour of the quantum-mechanical g‘” 
illustrated in figures 4 and 5. There is thus a major difference between the effect of 
two-photon absorption on the magnitudes of the degrees of second-order coherence 
defined quantum mechanically and classically. 

The source of the discrepancy lies in the nature of the photon state to which the 
light tends in the steady state. When N, = 0 it is seen from (41) and (42) that the only 
nonzero elements of the photon distribution in the steady state are Po(oo) and Pl(oo), 
their sum being unity in accordance with (45). The steady state is thus a mixture of 
the photon number states 10) and 11), the quantum-mechanical g”’ being zero for both 
states. Now any light beam which has a definite number of photons (other than zero) 
or is a mixture of a few restricted number states can only be treated quantum mech- 
anically since it cannot be represented by any probability distribution of classical 
intensity (see for example Perina 1972). The classical g‘” is therefore incapable of 
describing the second-order coherence either of the number-state beams of figure 4 
or of the steady states of the beams represented in figure 5 (see Klauder and Sudarshan 
(1968) for discussion of this point). 

It is seen from comparison of figures 3 and 5 that the quantum-mechanical g@) 
falls significantly below the classical lower bound of unity only when the mean photon 
numbers have been reduced to the order of one or two. The quantum-mechanical 
effects thus occur at very low light intensities where experimental observation is difficult. 
No similar effects occur in linear or single-photon absorption, where for N, = 0 the 
photon distribution retains its initial nature as the mean photon number is reduced. 

Because of the difference between the effects of two-photon absorption in quantum 
mechanics and classical theory it is not possible to make a detailed comparison of our 
results with those of Weber (1971). However, the classical calculations show the same 
qualitative behaviour as figure 5 in that the g”’ of initially chaotic light approaches that 
of initially coherent light after a period of two-photon absorption corresponding to z 
of the order of 0.5. 

The mean photon number and the degree of second-order coherence have been 
discussed in some detail because their time dependences give the most compact de- 
scription of the effects of the two-photon absorption on the light. However, the time 
dependence of the complete photon probability distribution is readily obtainable from 
(631 and the remaining figures show some results for the first four initial distributions 
listed in table 1. Figures 6 and 7 show the time dependence of P,(T) for initial number- 
state beams with even and odd numbers of photons. All nonzero elements of the 
distributions are shown. At large values of z, off the right-hand ends of the figures, the 
distributions tend to their steady-state forms in which only P0(co) and P1(co) are non- 
zero. For the special case of the initial number states, in which only even or odd elements 
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r 

Figure 6. Time dependence of the photon probability distribution P,(T) for an initial 
number-state beam which contains IO photons. The numbers attached to the curves 
indicate the corresponding values of n. 

I 

Figure 7. Time dependence of Pm(r) for an initial number-state beam which contains I I 
photons. 

of the distribution occur, only P,(co) or Pl(co) is nonzero, as shown in table 1. Figures 
8 and 9 show corresponding results for initially coherent and chaotic beams respectively. 
In these cases the initial distribution extends over a wide range of values of n and the 
figures show the time dependences only of selected elements of the distribution. At 
large T the distributions again tend to the appropriate steady-state limits given in 
table 1. 

All the above remarks apply to the case where N ,  = 0. The behaviour of the light 
is more complicated if some of the atoms are maintained in the excited state and we 
make only a brief comment on this case. As described in 9 5, the steady state for 
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r 

Figure 8. Time dependence of P.(T) for an initially coherent beam with mean photon number 
A, = IO. Only selected elements of the distribution are shown. 

n U 
r 

Figure 9. Time dependences of the low-n elements of Pm(r) for an initially chaotic beam 
with mean photon number A, = 10. 

N 2  # 0 is one in which the even and odd photon-number states have separate prob- 
ability distributions of a chaotic nature. The weights of the two parts of the distribution 
are determined by the initial photon distribution of the light in accordance with (43) 
and (44). In the very special case where these equations give 

P l ( W )  = ( N , / N , ) + P , ( x )  (70) 
(41) and (42) show that the two separate distributions combine to form a single chaotic 
distribution P,,(w) which has the same form as (19) with a mean photon number given 
by (45), (46) and (70) as 

(71) n, = (N,/N,)f[l - ( N , / N , ) * ] -  l .  
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However, the two parts of the distribution cannot in general be represented by a single 
expression P,(oo) which is valid for both even and odd n. The degree of second-order 
coherence g'," of the steady state is determined by (46) and (47); it is not difficult to 
show that g',") can take any positive value by appropriate choices of the magnitudes of 
N , / N ,  and Pl(oo). A wide variety of behaviours is therefore possible when N ,  # 0. 

In summary, the calculations described above illustrate the effects of two-photon 
absorption on the fluctuations of light. Calculations which ignore changes in the 
degree of second-order coherence are correct only to first order in the time, and they 
are in error for the higher orders in t or T, where the reaction of the two-photon ab- 
sorption on the beam begins to influence the absorption rate. The analysis presented 
in this paper enables the time-dependent statistical properties of the light to be 
evaluated for any kind of initial photon probability distribution. 
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Note added in pruuf. Stoler (1974) has shown that light having g(2) < 1, which he calls 
the photon antibunching or anticorrelation effect, can be generated by a nonlinear 
optical experiment involving degenerate parametric amplification. The present paper 
shows that antibunched photons can also be obtained by two-photon absorption, as 
in the beams which have gC2) < 1 in figures 4 and 5 .  
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